Part Number Hot Search : 
ML412PJB AD5274 741G07 ON0909 BFR93 EVICE TFS368A DC100
Product Description
Full Text Search
 

To Download MAX4892ETX Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 19-3577; Rev 2; 8/07
10/100/1000 Base-T Ethernet LAN Switch
General Description
The MAX4890/MAX4891/MAX4892 high-speed analog switches meet the needs of 10/100/1000 Base-T applications. These devices switch the signals from two interface transformers and connect the signals to a single 10/100/1000 Base-T Ethernet PHY, simplifying docking station design and reducing manufacturing costs. The MAX4890/MAX4891/MAX4892 can also route signals from a common interface transformer to two different boards in board-redundancy applications. The MAX4890/MAX4891/MAX4892 switches provide an extremely low capacitance and on-resistance to meet Ethernet insertion and return-loss specifications. The MAX4891/MAX4892 feature one and three built-in LED switches, respectively. The MAX4890/MAX4891/MAX4892 are available in space-saving 32- and 36-lead TQFN packages, significantly reducing the required PC board area. These devices operate over the -40C to +85C temperature range.
Features
Single +3.0V to +3.6V Power-Supply Voltage Low On-Resistance (RON): 4 (typ), 6.5 (max) Ultra-Low On-Capacitance (CON): 6.5pF (typ) Low < 200ps Bit-to-Bit Skew -3dB Bandwidth: 1GHz Optimized Pin-Out for Easy Transformer and PHY Interface Built-In LED Switches for Switching Indicators to Docking Station Low 450A (max) Quiescent Current Bidirectional 8 to 16 Multiplexer/Demultiplexer Space-Saving Packages 32-Pin, 5mm x 5mm, TQFN Package 36-Pin, 6mm x 6mm, TQFN Package
MAX4890/MAX4891/MAX4892
Applications
Notebooks and Docking Stations Servers and Routers with Ethernet Interfaces Board-Level Redundancy Protection SONET/SDH Signal Routing T3/E3 Redundancy Protection Video Switching
PART MAX4890ETJ MAX4891ETJ MAX4892ETX
Ordering Information
PIN-PACKAGE 32 TQFN-EP* 32 TQFN-EP* 36 TQFN-EP* LED SWITCHES -- 1 3
Note: All devices are specified for operation in the -40C to +85C temperature range. *EP = Exposed pad.
Pin Configurations
1B1 SEL 0B1 0B2 1B2 A1 A0 V+
TOP VIEW
32
A2 A3 N.C. N.C. N.C. N.C. A4 A5
31
30
29
28
27
26
25 24 23 22 21
2B1 3B1 2B2 3B2 4B1 5B1 4B2 5B2
1 2 3 4 5 6 7 8 9
A6
*EP
MAX4890
20 19 18 17
10
A7
11
GND
12
N.C.
13
7B2
14
6B2
15
7B1
16
6B1
Functional Diagrams and Typical Operating Circuit appear at end of data sheet.
TQFN
*EP = EXPOSED PAD. CONNECT EP TO GND OR LEAVE UNCONNECTED
Pin Configurations continued at end of data sheet.
________________________________________________________________ Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.
10/100/1000 Base-T Ethernet LAN Switch MAX4890/MAX4891/MAX4892
ABSOLUTE MAXIMUM RATINGS
V+ .............................................................................-0.3V to +4V SEL (Note 1) ..................................................-0.3V to (V+ +0.3V) A_, _B_, LED_, _LED_ ...................................-0.3V to (V+ +0.3V) Continuous Current (A_ to _B_) ......................................120mA Continuous Current (LED_ to _LED_) ...............................30mA Peak Current (A_ to _B_) (pulsed at 1ms, 10% duty cycle)................................240mA Continuous Power Dissipation (TA = +70C) 32-Pin TQFN (derate 34.5mW/C above +70C) ...........2.76W 36-Pin TQFN (derate 26.3mW/C above +70C) ...........2.11W Operating Temperature Range ...........................-40C to +85C Junction Temperature ......................................................+150C Storage Temperature Range .............................-65C to +150C Lead Temperature (soldering, 10s) .................................+300C
Note 1: Signals on SEL, exceeding V+ or GND, are clamped by internal diodes. Limit forward-diode current to maximum current rating.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(V+ = +3V to +3.6V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at V+ = 3.3V, TA = +25C.) (Note 2)
PARAMETER ANALOG SWITCH On-Resistance On-Resistance LED Switches On-Resistance Match Between Channels On-Resistance Flatness Off-Leakage Current On-Leakage Current ESD PROTECTION ESD Protection SWITCH AC PERFORMANCE Insertion Loss ILOS Insertion loss with typical transformer, RL = 100, 1MHz < f < 100MHz, Figure 1 (Note 3) Return loss with typical transformer, RL = 100, return loss, f in MHz, Figure 2 (Note 3) 1MHz < f < 40MHz 0.6 dB Human Body Model 2 kV RON V+ = 3V, IA_ = -40mA, 1.5V VA_ V+ TA = +25C TMIN to TMAX 4 5.5 6.5 40 0.5 1.5 TMIN to TMAX 0.01 -1 -1 +1 A ILA_(ON) V+ = 3.6V, VA_= 0.3V, 3.3V V_B1 or V_B2 = 0.3V, 3.3V or floating +1 2 SYMBOL CONDITIONS MIN TYP MAX UNITS
RONLED
V+ = 3V, I_LED_ = -40mA, 1.5V VA_ V+, MAX4891/MAX4892 V+ = 3V, IA_= -40mA, 1.5V VA_ V+ (Note 3) TA = +25C
RON
RFLAT(ON) ILA_(OFF)
V+ = 3V, IA_ = -40mA, VA_ = 1.5V, 2.7V V+ = 3.6V, VA_ = 0.3V, 3.3V V_B1 or V_B2 = 3.3V, 0.3V
RLOS1 Return Loss RLOS2
-19 -13 +20log (f/80) dB
40MHz < f < 100MHz
2
_______________________________________________________________________________________
10/100/1000 Base-T Ethernet LAN Switch
ELECTRICAL CHARACTERISTICS (continued)
(V+ = +3V to +3.6V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at V+ = 3.3V, TA = +25C.) (Note 2)
PARAMETER Crosstalk SYMBOL VCT1 VCT2 VCT3 VDCT1 Differential Crosstalk SWITCH DYNAMICS On-Channel -3dB Bandwidth Off-Capacitance On-Capacitance Off-Capacitance, LED Switches On-Capacitance, LED Switches Turn-On Time Turn-Off Time Propagation Delay Output Skew Between Ports Output Skew Same Port SWITCH LOGIC Input-Voltage Low Input-Voltage High Input-Logic Hysteresis Input Leakage Current Operating Supply-Voltage Range Quiescent Supply Current VIL VIH VHYST ISEL V+ I+ V+ = 3.6V, VSEL = 0 or V+ V+ = 3.6V, VSEL = 0 or V+ -5 3 280 2.0 100 +5 3.6 450 0.8 V mV uA V A BW COFF CON COFFLED CONLED tON tOFF tPLH, tPHL tSK(o) tSK(p) RL = 100, Differential pair f = 1MHz, _B_ inputs f = 1MHz, _B_ inputs f = 1MHz, _LED inputs f = 1MHz, _LED inputs VA_ = 1V, Figure 5 VA_ = 1V, Figure 5 CL = 10pF, Figure 6 Skew between A4 and A5 and any other port, Figure 7 Skew between opposite transitions in same port 1000 3.5 6.5 20 22 25 20 0.15 0.01 0.07 50 40 MHz pF pF pF pF ns ns ns ns ns VDCT2 VDCT3 CONDITIONS Any switch to any switch RL = 100, Figure 3 RL = 100, Figure 4 1MHz < f < 30MHz 30MHz < f < 60MHz 60MHz < f < 100MHz 1MHz < f < 30MHz 30MHz < f < 60MHz 60MHz < f < 100MHz MIN TYP -45 -40 -35 -60 -55 -50 dB dB MAX UNITS
MAX4890/MAX4891/MAX4892
Note 2: Specifications at -40C are guaranteed by design. Note 3: Guaranteed by design.
_______________________________________________________________________________________
3
10/100/1000 Base-T Ethernet LAN Switch MAX4890/MAX4891/MAX4892
Typical Operating Characteristics
(V+ = 3.3V, TA = +25C, unless otherwise noted.)
ON-RESISTANCE vs. VA_
MAX4890 toc01
ON-RESISTANCE vs. VA_
MAX4890 toc02
LED_ ON-RESISTANCE vs. VA_
18 16 14 RONLED () V+ = 3.0V
MAX4890 toc03
4.0
5
20
3.8 V+ = 3.0V, 3.3V, 3.6V RON ()
4
RON ()
3.6
3
TA = +85C TA = +25C TA = -40C
12 10 8 6 V+ = 3.3V V+ = 3.6V
3.4
2
3.2
1
4 2
3.0 0 0.9 1.8 VA_ (V) 2.7 3.6
0 0 1.1 VA_ (V) 2.2 3.3
0 0 0.9 1.8 VA_ (V) 2.7 3.6
LED_ ON-RESISTANCE vs. TEMPERATURE
18 16 14 RONLED () 12 10 8 6 4 2 0 0 1.1 VA_ (V) 2.2 3.3 TA = -40C TA = +25C TA = +85C
MAX4890 toc04
LEAKAGE CURRENT vs. TEMPERATURE
MAX4890 toc05
CHARGE INJECTION vs. VA_
MAX4890 toc06
20
1800 1600 LEAKAGE CURRENT (pA) 1400 1200 1000 800 600 400 200 0 -40 -15 10 35 60 ILA_(OFF) ILA_(ON)
30 25 CHARGE INJECTION (pC) 20 15 100 5 0
85
0
1.1 VA_ (V)
2.2
3.3
TEMPERATURE (C)
QUIESCENT SUPPLY CURRENT vs. TEMPERATURE
MAX4890 toc07
QUIESCENT SUPPLY CURRENT vs. LOGIC LEVEL
MAX4890 toc08
LOGIC THRESHOLD vs. SUPPLY VOLTAGE
1.6 LOGIC THRESHOLD (V) 1.4 1.2 1.0 0.8 0.6 0.4 VTHVTH+
MAX4890 toc09
350 QUIESCENT SUPPLY CURRENT (A) 330 310 290 270 250 230 210 190 170 150 -40 -15 10 35 60
1200 QUIESCENT SUPPLY CURRENT (A) 1000 800 600 400 200
1.8
0.2 0 85 0 1.1 2.2 3.3 TEMPERATURE (C) LOGIC LEVEL (V) 0 3.0 3.1 3.2 3.3 3.4 3.5 3.6 SUPPLY VOLTAGE (V)
4
_______________________________________________________________________________________
10/100/1000 Base-T Ethernet LAN Switch
Typical Operating Characteristics (continued)
(V+ = 3.3V, TA = +25C, unless otherwise noted.)
TURN-ON/-OFF TIME vs. SUPPLY VOLTAGE
MAX4890 toc10
MAX4890/MAX4891/MAX4892
TURN-ON/-OFF TIME vs. TEMPERATURE
OUTPUT RISE/FALL-TIME DELAY (ps) tON 25 20 15 tOFF 10
MAX4890 toc11
RISE-/FALL-TIME PROPAGATION DELAY vs. SUPPLY VOLTAGE
MAX4890 toc12
25
30
250 tPLH 200
20 tON tON/tOFF (ns) 15 tOFF 10
tON/tOFF (ns)
150
100 tPHL 50
5
5 0 3.0 3.2 3.4 3.6 -40 -15 10 35 60 85 SUPPLY VOLTAGE (V) TEMPERATURE (C)
0
3.0
3.3 SUPPLY VOLTAGE (V)
3.6
RISE-/FALL-TIME PROPAGATION DELAY vs. TEMPERATURE
MAX4890 toc13
PULSE SKEW vs. SUPPLY VOLTAGE
MAX4890 toc14
PULSE SKEW vs. TEMPERATURE
tSK(p) 80 PULSE SKEW (ps)
MAX4890 toc15
250 OUTPUT RISE-/FALL-TIME DELAY (ps) tPLH 200
100 tSK(p) 80 PULSE SKEW (ps)
100
60
60
150
40
40
100 tPHL 50 -40 -15 10 35 60 85 TEMPERATURE (C)
20
20
0 3.0 3.3 SUPPLY VOLTAGE (V) 3.6
0 -40 -15 10 35 60 85 TEMPERATURE (C)
OUTPUT SKEW vs. SUPPLY VOLTAGE
MAX4890 toc16
OUTPUT SKEW vs. TEMPERATURE
MAX4890 toc17
DIFFERENTIAL INSERTION LOSS vs. FREQUENCY
MAX4890 toc18
20
20 tSK(o)_FALL 10 OUTPUT SKEW (ps)
1 DIFFERENTIAL INSERTION LOSS (dB) 0 -1 -2 -3 -4 -5
OUTPUT SKEW (ps)
10
tSK(o)_FALL
0 tSK(o)_RISE -10
0 tSK(o)_RISE -10
-20 3.0 3.3 SUPPLY VOLTAGE (V) 3.6
-20 -40 -15 10 35 60 85 TEMPERATURE (C)
1
10 FREQUENCY (MHz)
100
_______________________________________________________________________________________
5
10/100/1000 Base-T Ethernet LAN Switch MAX4890/MAX4891/MAX4892
Typical Operating Characteristics (continued)
(V+ = 3.3V, TA = +25C, unless otherwise noted.)
DIFFERENTIAL RETURN LOSS vs. FREQUENCY
MAX4890 toc19
DIFFERENTIAL CROSSTALK vs. FREQUENCY
MAX4890 toc20
SINGLE-ENDED OFF-ISOLATION vs. FREQUENCY
-10 -20 -30 -40 -50 -60 -70 -80 -90 -100
MAX4890 toc21
0 DIFFERENTIAL RETURN LOSS (dB)
0 -10 DIFFERENTIAL CROSSTALK (dB) -20 -30 -40 -50 -60 -70 -80 -90
0 SINGLE-ENDED OFF-ISOLATION (dB)
-10
-20
-30
-40 1 10 FREQUENCY (MHz) 100
-100 1 10 FREQUENCY (MHz) 100
1
10 FREQUENCY (MHz)
100
SINGLE-ENDED CROSSTALK vs. FREQUENCY
MAX4890 toc22
SINGLE-ENDED INSERTION LOSS vs. FREQUENCY
SINGLE-ENDED INSERTION LOSS (dB)
MAX4890 toc23
0 -10 SINGLE-ENDED CROSSTALK (dB) -20 -30 -40 -50 -60 -70 -80 -90 -100 1 10 FREQUENCY (MHz)
0
-1
-2
-3
-4
-5 100 1 10 100 1000 FREQUENCY (MHz)
6
_______________________________________________________________________________________
10/100/1000 Base-T Ethernet LAN Switch
Pin Description
PIN MAX4890 MAX4891 MAX4892 36, 1, 2, 3, 7-10 4 5 6 -- 11 12 13 14 15, 16, 19, 20, 23, 24, 28, 29 17, 18, 21, 22, 25, 26, 30, 31 27 32 33 34 35 -- 31, 32, 1, 2, 31, 32, 1, 2, 7-10 7-10 -- -- -- 3-6, 12 11 -- -- -- 13, 14, 17, 18, 21, 22, 25, 26 15, 16, 19, 20, 23, 24, 27, 28 29 -- -- -- 30 -- 3 4 5 6, 12 11 -- -- -- 13, 14, 17, 18, 21, 22, 25, 26 15, 16, 19, 20, 23, 24, 27, 28 29 -- -- -- 30 -- NAME A0-A7 LED0 0LED1 0LED2 N.C. GND LED1 1LED1 1LED2 7B2-0B2 FUNCTION Differential PHY Interface Pair. Connects to the Ethernet PHY. LED0 Input 0LED1 Output. Connects LED0 to 0LED1 when SEL = 0. 0LED2 Output. Connects LED0 to 0LED2 when SEL = 1. No Connection. Not internally connected. Ground LED1 Input 1LED1 Output. Connects LED1 to 1LED1 when SEL = 0. 1LED2 Output. Connects LED1 to 1LED2 when SEL = 1. B2 Differential Transformer Pair
MAX4890/MAX4891/MAX4892
7B1-0B1 SEL 2LED2 2LED1 LED2 V+ EP
B1 Differential Transformer Pair Select Input. Selects switch connection. See the Truth Table (Table 1). 2LED2 Output. Connects LED2 to 2LED2 when SEL = 1. 2LED1 Output. Connects LED2 to 2LED1 when SEL = 0. LED2 Input Positive Supply-Voltage Input Exposed Paddle. Not internally connected. Leave EP unconnected or connect to ground.
_______________________________________________________________________________________
7
10/100/1000 Base-T Ethernet LAN Switch MAX4890/MAX4891/MAX4892
Test Circuits
INSERTION LOSS MINI CKT BALUN
MAX4892 36 TQFN
1 6 5 4 50:100 CB1 C2 0.01F 50 TRACE A1 1 50 TRACE 50 0B1 TRACE A0 36 31 50 3B1 TRACE 30 5 4 6 PULSE H5007 24-PIN PACKAGE 50 TRACE MINI CKT BALUN
20 21 19
4 5
3
NETWORK ANALYZER
50 TRACE 3
50 TRACE R1 75 C3 1000pF
6 100:50 CB3
50 1 TRACE
NETWORK ANALYZER
Figure 1. Differential Insertion Loss
RETURN LOSS
MAX4892 36 TQFN
A2 2 A3 3 3B1 25
50 TRACE 5 50 TRACE 4 6
PULSE H5007 24-PIN PACKAGE
20 21 19
50 TRACE
4 5
MINI CKT BALUN
3
R16 49.9
50 TRACE R1 75 C3 1000pF
6 100:50 CB3
50 1 TRACE
R17 49.9
NETWORK ANALYZER
C2 0.01F
Figure 2. Differential Return Loss
8
_______________________________________________________________________________________
10/100/1000 Base-T Ethernet LAN Switch
Test Circuits (continued)
MAX4890/MAX4891/MAX4892
MAX4892
SINGLE-ENDED BANDWIDTH NETWORK ANALYZER 50 TRACE 36 TQFN 0B1 31 50 TRACE NETWORK ANALYZER
A0 36
SINGLE-ENDED CROSSTALK NETWORK ANALYZER 50 TRACE
A2 2
2B1 26 R13 49.9
NETWORK ANALYZER
50 TRACE
A3 3
3B1 25 R14 49.9
SINGLE-ENDED OFF-ISOLATION NETWORK ANALYZER 50 TRACE R15 49.9
A4 7
4B1 22 50 TRACE NETWORK ANALYZER
Figure 3. Single-Ended Bandwidth, Crosstalk and Off-Isolation
Detailed Description
The MAX4890/MAX4891/MAX4892 are high-speed analog switches targeted for 10/100/1000 Base-T applications. In a typical application, the MAX4890/MAX4891/ MAX4892 switch the signals from two separate interface transformers and connect the signals to a single 10/100/1000 Base-T Ethernet PHY (see the Typical Operating Circuit). This configuration simplifies docking station design by avoiding signal reflections associated with unterminated transmission lines in a T configuration. The MAX4891 and MAX4892 also include LED switches that allow the LED output signals to be routed to a docking station along with the Ethernet signals. See the Functional Diagrams. The MAX4890/MAX4891/MAX4892 switches provide an extremely low capacitance and on-resistance to meet Ethernet insertion and return-loss specifications. The MAX4891/MAX4892 feature one and three built-in LED switches, respectively. The MAX4890/MAX4891/MAX4892 incorporate a unique architecture design utilizing only n-channel switches
within the main Ethernet switch, reducing I/O capacitance and channel resistance. An internal two-stage charge pump with a nominal output of 7.5V provides the high voltage needed to drive the gates of the n-channel switches, while maintaining a consistently low R ON throughout the input signal range. An internal bandgap reference set to 1.23V and an internal oscillator running at 2.5MHz provide proper charge-pump operation. Unlike other charge-pump circuits, the MAX4890/ MAX4891/MAX4892 include internal flyback capacitors, reducing design time, board space, and cost.
Digital Control Inputs
The MAX4890/MAX4891/MAX4892 provide a single digital control SEL. SEL controls the switches as well as the LED switches as shown in Table 1.
Table 1. Truth Table
SEL 0 1 CONNECTION A_ to _B1, LED_ to _LED1 A_ to _B2, LED_ to _LED2
_______________________________________________________________________________________
9
10/100/1000 Base-T Ethernet LAN Switch MAX4890/MAX4891/MAX4892
DIFFERENTIAL CROSSTALK TRANSMIT CKT
1
MINI CKT BALUN
6
MAX4892 36-TQFN AB1 22 A4
7 5B1 21 R3 49.9 R4 49.9
NETWORK ANALYZER
50 TRACE 3 50:100
4
A5 8 CB4
DIFFERENTIAL CROSSTALK RECEIVE CKT 50 TRACE MINI CKT BALUN 50 TRACE 6B1 18 A6 9 50 TRACE A7 10 CB5 7B1 17 R3 49.9 R4 49.9
NETWORK ANALYZER
1
6 5
3 50:100
4
Figure 4. Differential Crosstalk
Analog Signal Levels
The on-resistance of the MAX4890/MAX4891/MAX4892 is very low and stable as the analog input signals are swept from ground to V+ (see the Typical Operating Characteristics). The switches are bidirectional, allowing A_ and _B_ to be configured as either inputs or outputs.
Line-Card Redundancy (Ethernet T3/E3)
Figure 10 shows the MAX4890/MAX4891/MAX4892 in a line-card redundancy configuration.
Power-Supply Sequencing and Overvoltage Protection
Caution: Do not exceed the absolute maximum ratings. Stresses beyond the listed ratings may cause permanent damage to the device. Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals, especially if the analog signal is not current limited.
ESD Protection
The MAX4890/MAX4891/MAX4892 are characterized using the Human Body Model for 2kV of ESD protection. Figure 8 shows the Human Body Model, and Figure 9 shows the current waveform the Human Body Model generates when discharged into a low-impedance load. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a 1.5k resistor.
Layout
High-speed switches require proper layout and design procedures for optimum performance. Keep designcontrolled-impedance printed circuit board traces as short as possible. Ensure that bypass capacitors are as close to the device as possible. Use large ground planes where possible.
Applications Information
Typical Operating Circuit
The Typical Operating Circuit depicts the MAX4890/ MAX4891/MAX4892 in a 10/100/1000 Base-T docking station application.
10
______________________________________________________________________________________
10/100/1000 Base-T Ethernet LAN Switch MAX4890/MAX4891/MAX4892
SEL
2.5V 1.25V 1.25V 0V tON A_ 90% tOFF 90% 0V tON A_ 90% tOFF 10% 0V PULSE SKEW = tSK(p) = |tPHL - tPLH| THE MAX4890/MAX4891/MAX4892 SWITCHES ARE FULLY BIDIRECTIONAL. tPLH tPHL A_
3.0V 2.0V 1.0V
VOH 2.0V _B_ VOL
Figure 5. ENABLE and DISABLE Times
Figure 6. Propagation Delay Times
3.0V 2.0V A_ 1.0V tPLHX tPHLX
RC 1M CHARGE-CURRENT LIMIT RESISTOR HIGHVOLTAGE DC SOURCE
RD 1500 DISCHARGE RESISTANCE DEVICE UNDER TEST
VOH 2.0V _B_ VOL tPHLY VOH 2.0V _B_ VOL
Cs 100pF
STORAGE CAPACITOR
tPLHY
PULSE SKEW = tSK(p) = |tPHLY - tPLHX| OR |tPHLy - tPHLx| THE MAX4890/MAX4891/MAX4892 SWITCHES ARE FULLY BIDIRECTIONAL.
Figure 7. Output Skew
Figure 8. Human Body ESD Test Model
______________________________________________________________________________________
11
10/100/1000 Base-T Ethernet LAN Switch MAX4890/MAX4891/MAX4892
IP 100% 90% AMPERES 36.8% 10% 0 0 tRL TIME
Ir
PEAK-TO-PEAK RINGING (NOT DRAWN TO SCALE)
ETHERNET PHYs OR T3/E3 LIUs PRIMARY CARD
MAX4890 MAX4891 MAX4892
PROTECTION SWITCH ETHERNET PHYs OR T3/E3 LIUs PROTECTION CARD
TRANSFORMER SWITCHING CARD
tDL CURRENT WAVEFORM
Figure 9. Human Body Model Current Waveform
Figure 10. Typical Application for Line-Card Redundancy
12
______________________________________________________________________________________
10/100/1000 Base-T Ethernet LAN Switch
Typical Operating Circuit
MAX4890/MAX4891/MAX4892
DOCKING STATION
TRANSFORMER
RJ-45
LED
CONNECTOR NOTEBOOK
0B2 1B2 2B2 3B2 TRD0_P TRD0_N A0 A1 4B2 5B2
MAX4890/MAX4891/MAX4892
6B2 7B2 _LED2
TRD1_P TRD1_N ETHERNET PHY/MAC TRD2_P TRD2_N
A2 A3
A4 A5
0B1 1B1
TRANSFORMER
TRD3_P TRD3_N
A6 A7
2B1 3B1 4B1 5B1 6B1 7B1
RJ-45
LED_OUT
LED_
SEL
SEL_DOCK
_LED1
LED
______________________________________________________________________________________
13
10/100/1000 Base-T Ethernet LAN Switch MAX4890/MAX4891/MAX4892
Functional Diagrams
A0 A1
0B1 1B1 0B2 1B2
A0 A1
0B1 1B1 0B2 1B2
A2 A3
2B1 3B1 2B2 3B2
A2 A3
2B1 3B1 2B2 3B2
A4 A5
4B1 5B1 4B2 5B2
A4 A5
4B1 5B1 4B2 5B2
A6 A7
6B1 7B1 6B2 7B2
A6 A7
6B1 7B1 6B2 7B2
LED0 SEL MAX4890 SEL MAX4891
0LED1 0LED2
14
______________________________________________________________________________________
10/100/1000 Base-T Ethernet LAN Switch
Functional Diagrams (continued)
MAX4890/MAX4891/MAX4892
A0 A1
0B1 1B1 0B2 1B2
A2 A3
2B1 3B1 2B2 3B2
A4 A5
4B1 5B1 4B2 5B2
A6 A7
6B1 7B1 6B2 7B2
LED0 LED1 LED2
0LED1 0LED2 1LED1 1LED2 2LED1 2LED2
SEL MAX4892
______________________________________________________________________________________
15
10/100/1000 Base-T Ethernet LAN Switch MAX4890/MAX4891/MAX4892
Pin Configurations (continued)
2LED1 LED2 SEL 0B1 1B1 0B2 1B2 0B1 0B2 29
TOP VIEW
2LED2
36
35
34
33
32
31
30
A2 A3 LED0 0LED1 0LED2 N.C. A4 A5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 *EP MAX4891
24 23 22 21 20 19 18 17
2B1 A1 3B1 2B2 3B2 4B1 5B1 4B2 5B2 A2 A3 LED0 0LED1 0LED2 A4 A5 A6 1 2 3 4 5 6 7 8 9 *EP MAX4892 27 26 25 24 23 22 21 20 19 SEL 2B1 3B1 2B2 3B2 4B1 5B1 4B2 5B2
10
11
12
13
14
15
16
17
7B1
A7
7B2
6B2
GND
LED1
1LED1
TQFN
*EP = EXPOSED PAD. CONNECT EP TO GND OR LEAVE UNCONNECTED
TQFN
*EP = EXPOSED PAD. CONNECT EP TO GND OR LEAVE UNCONNECTED
Chip Information
PROCESS: BiCMOS
Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. PACKAGE TYPE 32 TQFN-EP 36 TQFN-EP PACKAGE CODE T-3255-4 T-3666-3 DOCUMENT NO. 21-0140 21-0141
16
______________________________________________________________________________________
1LED2
7B2
7B1
GND
N.C.
6B2
6B1
6B1
A6
A7
18
28
32
31
30
29
28
27
26
25
1B1
1B2
A1
A0
V+
A0
V+
10/100/1000 Base-T Ethernet LAN Switch
Revision History
REVISION NUMBER 1 2 REVISION DATE 8/05 8/07 DESCRIPTION Removed future product part number Added exposed pad information PAGES CHANGED -- 1, 7, 14, 15, 16
MAX4890/MAX4891/MAX4892
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 17
(c) 2007 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.


▲Up To Search▲   

 
Price & Availability of MAX4892ETX

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X